Relevance of human fat distribution on lipid and lipoprotein metabolism and cardiovascular disease risk

Marie-Eve Pichéa,b, Senthil K. Vasanb, Leanne Hodsonb, and Fredrik Karpeb,c

Purpose of review
Upper body abdominal and lower body gluteofemoral fat depot masses display opposing associations with plasma lipid and lipoprotein and cardiovascular disease (CVD) risk profiles. We review developments on adipose tissue fatty acid metabolism in the context of body fat distribution and how that might be related to adverse lipid and lipoprotein profiles and CVD risk.

Recent findings
Recent data have confirmed the paradoxical relationship of upper abdominal and lower body gluteofemoral adiposity and CVD risk. Mechanistically, this is likely to reflect the different ways fat depots handle lipid storage and release, which impacts directly and indirectly on lipid and lipoprotein metabolism. The upper body enhances immediate fat storage pathway with rapid uptake of dietary-derived fatty acids, whereas the lower body fat depot has a reduced lipid turnover accommodating a slower fat redistribution. Body fat distribution and the fat depots’ ability to undergo appropriate expansion when fat storage is required, rather than overall body fatness, appear as the important determinant of metabolic health.

Summary
A focus on fat distribution in overweight people, preferably using precise imaging methods, rather than quantifying total body fatness, is likely to provide the medical community with better tools to stratify and treat patients with obesity-related complications.

Keywords
adipose tissue expandability, adipose tissue metabolism, body fat distribution, cardiovascular risk, lipid–lipoprotein profile

INTRODUCTION
Although obesity per se is positively associated with cardiovascular disease (CVD), this relationship is complex because of several independent associations with CVD risk markers such as hypertension, hyperlipidaemia, insulin resistance or even type 2 diabetes. It is also recognized that total body fatness can have divergent associations with CVD dependent of fat distribution. The recognition of the fact that different fat depots handle lipid metabolism in very different ways \cite{1} and its consequence on whole body lipid and lipoprotein homeostasis will be reviewed in this article. We will pursue the argument that obesity per se is a less important determinant of metabolic dysfunction, instead it is likely to be body fat distribution and the regional fat depots’ capability to accommodate adequate fat storage that determines metabolic health \cite{2}.

FAT DEPOTS: AN OVERVIEW
The major compartments for dedicated fat storage in the human body includes the subcutaneous adipose tissue (SAT) depot, defined as upper body abdominal SAT (aSAT) and the lower body gluteofemoral fat depots, which together account for more than 80\% of overall body fat mass \cite{3}. Additionally, the

*Quebec Heart and Lung Institute, Laval University, Canada; bOxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital and cNIHR Oxford Biomedical Centre, Oxford University Hospital Trust and University of Oxford, Oxford, UK

Correspondence to Fredrik Karpe, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK. Tel: +44 1865 857222; e-mail: Fredrik.Karpe@ocdem.ox.ac.uk

DOI:10.1097/MOL.0000000000000522
Hyperlipidaemia and cardiovascular disease

KEY POINTS

- Susceptibility to obesity-related metabolic complications is not mediated by overall body fatness, but is largely dependent on the body fat distribution and the ability to sufficiently expand fat depots.
- Upper body abdominal and lower body gluteofemoral fat depots exhibit opposing associations with risk of cardiovascular disease and adverse lipid and lipoprotein profiles.
- The opposite relationship of abdominal and gluteofemoral fat depots to cardiovascular risk reflects differential ways in which these fat depots handle lipid and lipoproteins.
- Sex differences exist in lipid handling, which may explain the different implications of body fat depots in obesity-related lipid–lipoprotein profile and metabolic diseases in men and women.

intra-abdominal depots, which includes visceral adipose tissue (VAT), composed of two major compartments (omentum and mesenteric) represents approximately 10% of overall body fatness in women whereas this proportion may reach up to 25% in men [4]. Closer examination of the aSAT depot has led to the identification of two anatomically and biologically distinct compartments: a superficial layer of SAT (sSAT) and a deeper SAT (dSAT) compartment, separated anatomically by Scarpa’s fascia [5–7]. The adverse effects of excessive ‘upper body adiposity’ has often been linked to VAT, and the role of aSAT in the regulation of metabolic health has been less recognized until recently. The conventional anthropometric measurement of abdominal obesity is waist circumference but this surrogate marker does not distinguish between aSAT and VAT. Precise imaging techniques such as computed tomography (CT) scan, MRI and dual energy X-ray absorptiometry (DEXA) provide better estimates of fat depot masses, particularly in the abdominal region.

UPPER BODY ABDOMINAL FAT DEPOTS

Large cohort studies such as the Framingham Heart Study and the Jackson Heart Study using CT-imaging, have shown that excess VAT is a predictor of CVD, independently of total body fat mass or SAT [12–15]. In a 10-year longitudinal study of Japanese men, cases developing coronary heart disease (CHD) were approximately 22% more VAT than controls [16]. Adverse effects of adiposity, like insulin resistance or dyslipidaemia, are likely to result from either, or both, dysfunctional aSAT or VAT accumulation; this becomes clinically apparent among individuals with increased waist-to-hip ratio (WHR) [17,18]. Although accumulation of fat in aSAT is considered to be less detrimental than excess VAT depot, disproportionate expansion of dSAT compared with sSAT has been associated with CVD risk factors; dSAT shares morphological and functional similarities to VAT [7,19]. However, these models might be too simplistic as attempts to remove VAT in randomized trials using surgical omentectomy do not appear to show any metabolic benefit [20–25].

Abdominal adiposity, particularly VAT, has been shown to be associated with dyslipidaemia characterized by raised concentrations of total and very LDL-triglycerides (VLDL-TG), low HDL-cholesterol, and an abundance of smaller and denser LDL particles despite relatively normal total and LDL-cholesterol levels [26]. This dyslipidaemic profile could be fuelled by excess flux of fatty acids to the liver. However, the relevance of the quantitative contribution of nonesterified fatty acid (NEFA) delivery from VAT has been questioned as it only accounts to ~15% of the total systemic NEFA circulation, whereas majority of the NEFA is delivered by SAT [27,28]. VAT is more metabolically active (greater fat storage and release) leading to higher lipid turnover than other fat tissues, greater lipolytic rates in response to stress hormones, and a lesser response to the antilipolytic effect of insulin, thus promoting atherogenic lipid and lipoprotein profiles compared with aSAT (Fig. 1) [29]. Although it is suggested that the aSAT depot may help to regulate body fat depots (android and visceral fat) are associated with increased risk of hypertriglyceridaemia, impaired fasting glucose, hypertension and insulin resistance, whereas lower body fat depots (gynoid and leg fat) have opposite associations whenever adjusted for total body fat mass [11*]. Compared with conventional anthropometry, it was very clear that precise instruments of quantifying fat depot masses enhanced the ability to observe the paradoxical associations between regional fat masses.

UPPER BODY ABDOMINAL VERSUS LOWER BODY GLUTEOFEMORAL FAT DEPOTS

Epidemiological studies have shown that upper and lower body adiposity measured using waist circumference and hip circumference have paradoxical effects on metabolic health and CVD events and these effects are independent of total body fatness measured with BMI [8–10]. Using DEXA body composition measurements of 4950 participants in the Oxford Biobank, we have recently shown that upper
lipid metabolism by sequestering lipids destined to ectopic fat depots [30,31], the heterogeneity of the aSAT depot makes this questionable. The deeper aspect of the depot (dSAT) appears to have similarities to VAT [7], and an expansion of dSAT may, therefore, impact negatively on effective fat storage with effects on lipid and lipoprotein metabolism.

LOWER BODY GLUTEOFEMORAL FAT DEPOTS

The CVD and diabetes-protective properties of the lower body gluteofemoral fat depots across a wide range of age, BMI and comorbidities is well established [11*,32,33,34*,35,36]. Gluteofemoral fat, as measured by thigh circumference, hip circumference or leg fat mass, is associated with lower total-cholesterol and LDL-cholesterol, lower total-triglyceride and VLDL-TG, and higher HDL-cholesterol levels [37–40]. In the INTERHEART study, an independent association between larger hip circumference and lower risk for myocardial infarction has been shown [9]. In the prospective European Prospective Investigation into Cancer and Nutrition – Norfolk study, larger hip circumference was associated with a lower hazard ratio for CHD [8]. In a cross-sectional study involving 683 university students, higher levels of leg fat mass, as measured using DEXA, have been associated with a more favourable lipid profile, regardless of total body fatness, cardiorespiratory fitness or physical activity levels [41]. Change in leg fat mass after a 14-week intervention with diet and exercise was inversely associated with LDL-cholesterol levels and a number of CVD risk factors in overweight and obese women [42]. The positive health effects of gluteofemoral fat could probably be related to its various inherent properties such as its ability to serve as a long-term storage reservoir for excess fat, thus acting as a ‘metabolic sink,’ and protecting other tissues from excessive exposure to lipids [32,43]. The tissue is characterized by a low lipid turnover compared with abdominal fat depots [30]. During energy deficit, the gluteofemoral depots shrink more slowly than abdominal...
Depots [44–46]. Absence of gluteofemoral fat, such as in familial partial lipodystrophy, is almost invariably associated with dyslipidaemia and liver fat accumulation.

WHAT IS THE EVIDENCE THAT FAT DEPOTS HANDLE LIPID AND LIPOPROTEINS DIFFERENTLY?

Factors that regulate lipid trafficking in fat depots is balanced between the rate of lipolysis and the rate of fat storage originating from chylomicron or VLDL-TG. There is also a small fraction of direct uptake of NEFA by adipose tissue. The aSAT is characterized by a greater fatty acid uptake from diet-derived fatty acid and a high turnover that is easily stimulated by adrenergic receptor activation. In contrast, the gluteofemoral adipose tissue depots are characterized by a reduced turnover and a higher capacity to accommodate lipids undergoing redistribution (recirculating fatty acid from VLDL-TG or from NEFA pool; Fig. 1) [1]. The uptake of diet-derived fatty acid occurs less efficiently in the gluteofemoral fat than in the abdominal fat depots [28,47]. This is balanced by less fatty acid release from gluteofemoral adipose tissue in the postabsorptive state or during adrenergic lipolytic stimuli [28,48]. Direct measurements of lipid turnover after oral administration of radiolabelled fatty acid show faster short-term uptake of diet-derived lipids in subcutaneous abdominal than in femoral fat depot [47,49,50]. Administration of isotopically labelled fatty acid followed by serial biopsies of abdominal and femoral adipose tissue showed higher incorporation (~50%) of diet-derived fatty acid in the abdominal than in the femoral fat depot [49]. Additional metabolic studies consistently demonstrated higher uptake of chylomicron-derived fatty acid in abdominal adipose tissue than in femoral adipose tissue [51–53].

Using two different fatty acid labels to simultaneously quantify extraction of dietary chylomicron-derived triglyceride and VLDL-derived triglyceride across abdominal and gluteofemoral adipose tissue depots, McQuaid and colleagues showed that chylomicron-derived triglyceride were more efficiently extracted by abdominal adipose tissue, whereas no difference for VLDL-derived triglyceride was observed [53]. Therefore, in relative terms, the gluteofemoral adipose tissue depots have a preference for taking up fatty acid from VLDL-TG compared with chylomicron-TG [53]. The extension of this observation is that VLDL-TG represents off-loading of lipids from the liver, which could suggest a hepatoferofemoral axis for fat storage. This would provide an explanation for the hepatic steatosis observed in patients lacking gluteofemoral adipose tissue depots, such as in familial partial lipodystrophy.

SEX DIFFERENCE IN BODY FAT DISTRIBUTION PATTERN

The difference in body fat distribution between men and women has been related to both sex-specific lipid–lipoprotein profiles and CVD risk [32,54]. The female lower body fat depot is only reduced during periods of excessive energy demand [55]. After menopause, a switch in storage pattern from peripheral to central is observed and this is associated with a parallel increase in metabolic risks including adverse lipoprotein profile comparable with that seen in men [56]. However, an increase in total fat mass in men is rather immediately associated with accumulation in VAT [57]. Observations from transsexuals who have been treated with sex hormones have shown that the female-to-male transition induced by intramuscular testosterone injections show a progressive shift in body fat distribution from gluteofemoral to abdominal over a few months to 3 years [58–60]. Conversely, estrogen treatment in the male-to-female transition increases fat deposition in all SAT depots, whereas having little effect on the VAT depot [58,60].

SEX DIFFERENCE IN FATTY ACID METABOLISM AND METABOLIC CONSEQUENCES

In women, diet-derived lipid storage increases in proportion to lower body fat mass, whereas no association was found between relative lipid uptake in aSAT and adiposity measures [61]. In men, the capacity of aSAT to rapidly assimilate fat is higher compared with that of the femoral fat depot [62]. Indirect assessment of lipid uptake by fat depots suggests that VAT more efficiently removes lipids from the circulation during the postprandial period in men than in women [47,63]. Dietary fatty acids enter the circulation through chylomicron synthesis and may enter the liver in at least two ways [64]. Fatty acids are released from triglyceride-rich lipoprotein core of chylomicron by lipoprotein lipase. When this process occurs at a higher rate than the tissue uptake allows for, the excessive fatty acids spill over into the plasma NEFA pool and consequently contribute to the postprandial NEFA plasma concentrations reaching the liver. The chylomicron remnants with their remaining triglyceride content are taken up by the liver. The fatty acid spill over pathway is more pronounced in women compared with men, despite women having a greater fat mass [65*]. This route could enhance recirculating fatty
acid toward long-term lipid storage and there could also be different handling of the fatty acids in the liver depending on whether they enter as NEFA or by lipoprotein remnant uptake.

Sex differences in VLDL-TG metabolism have been reported in several studies [66,67]. Women channelled a larger proportion of VLDL-TG to femoral adipose tissue depot for storage in the postabsorptive state [68]. Furthermore, the more femoral adipose tissue there is, the greater the efficiency to VLDL-TG uptake by this depot [69]. Men have higher plasma VLDL-TG concentrations and higher VLDL-TG secretion rates than women at any degree of adiposity [67]. Although hepatic VLDL-TG secretion rate was an important determinant of plasma VLDL-TG concentrations in both women and men, VLDL-TG secretion explained 70% of VLDL-TG concentrations in plasma in men but only 30% in women, indicating that the female plasma triglyceride concentrations are more reliant on catabolism.

ADIPOSE TISSUE EXPANDABILITY

Upper and lower body adipose tissue respond differently to increasing demands for fat storage. Whilst the upper body subcutaneous adipose tissue depot displays a hyperplastic response (more fat in each fat cell), the gluteofemoral adipose tissue shows a proliferative response (new fat deposited in new cells) [70]. Expanding the fat stores in time of excess energy storage is a must to maintain metabolic health (Fig. 2). The failure of adipose tissue expandability as a unifying hypothesis to explain complications of obesity was first muted by Danforth [71]. Subsequently, this has been refined and underpinned by mechanistic insight by several groups [72,73]. More recently, this concept has been given support using large-scale genetic resources. Yaghootkar et al. [2]] have shown that carriers of ‘favourable adiposity alleles’ have a higher BMI and body fat percentage but, paradoxically, lower risk of diabetes, hypertension and CVD disease. This phenotype is what is otherwise called ‘metabolically healthy obesity. Thus, absence of ‘favourable adiposity alleles’ may predispose the individual to poor adipose tissue expandability leading to obesity-related complications. It seems that carriers of the ‘favourable adiposity alleles’ are characterized by a more uniform fat distribution, which is geared towards subcutaneous, rather than VAT expansion [74]. The failure of appropriate adipose tissue expansion and fat storage leads to overflow of lipids, which will be stored in ectopic nonadipose tissue [75], which is usually the case in an obese individual characterized by greater VAT and lower peripheral subcutaneous fat. With this in mind, the relationships between plasma lipids and regional adipose...
tissue depot masses becomes complex as there might be a direct positive relationship between VAT and raised lipids, whereas a lower subcutaneous adipose tissue mass likely may either reflect leanness or a failure of expansion. The same duality is likely to exist for lower body fat depots.

EFFECT ON THE LIVER

Overall body fatness and abdominal visceral adiposity are both associated with liver fat accumulation, which in turn is associated with hepatic overproduction of VLDL-TG particles fuelling hypertriglyceridaemia [76]. Hepatic VLDL production is primarily substrate driven, with the most important substrates being NEFAs [77]. As the liver accumulates fat, there is overproduction of large VLDL particles [78]. NEFAs are taken up by the liver in proportion to their delivery rate [79]. The release of NEFAs from upper body SAT is a major determinant of systemic NEFA plasma concentrations, whereas VAT may contribute fatty acids specifically to the liver [80]. Thus, individuals with greater amounts of VAT are likely to have abnormalities in hepatic fatty acid metabolism. Again, this relationship is more complex than anticipated and a dissociation between VAT volume and liver fat content has also been demonstrated [81].

CONCLUSION

The fat depots in the human body handle lipid storage and release differently and this impacts lipid and lipoprotein metabolism both directly and indirectly. Direct effects are seen on how various triglyceride-rich lipoprotein species are handled differently by upper and lower body fat depots and also how the fat depots respond to lipolytic stimuli. Indirect effects, such as the impact on whole body fat storage capacity, is determined by body fat distribution, where the lower body fat depot appears to sequester excess fat better than upper body abdominal fat depots alleviating the formation of ectopic fat accumulation. Determinants of regional fat distribution, be it by genetic, epigenetic or hormonal influences, is a major determinant for lipid and lipoprotein metabolism with direct effects on CVD risk.

Acknowledgements

M.E.P. is recipient of a postdoctoral training fellowship grants from the Fonds de Recherche du Québec-Santé (FRQ-S) and the Heart and Lung Institute Foundation. F.K. is supported by the British Heart Foundation (RG/17/1/32663). S.K.V. is supported by the Throne-Holst Foundation. F.K. has received support from the NIHR Oxford BRC Obesity, Diet and Lifestyle Theme for the Oxford Biobank.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

This landmark article provides independent genetic underpinning of the adipose tissue expandability hypothesis.

This publication describes how precise quantification of regional fat masses enhances the ability to detect the paradoxical relationships between upper and lower body adiposity and obesity-related consequences.

Relevance of human fat distribution and CVD risk Piché et al.

This publication presents regional body fat distribution data, including leg fat mass, measures using DXA, in men and postmenopausal women in regard to the prevalence of diabetes mellitus. This study found that higher leg fat mass was independently associated with a lower risk of diabetes mellitus in adult populations. This study found that higher leg fat mass was independently associated with a lower risk of diabetes mellitus in adult populations.

53. McQuaid SE, Humphreys SM, Hodson L, et al. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 2010; 59:2465–2473.

0957-9672 Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved. www.clinicalkey.com 291

Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.